Effects of mTBI on Neuromechanical Function of Olympic-Level Boxers

Edien A. Fernandini, MS, ATC; John M. Spillman, MS, ATC; MaKayla D. Colbert MS, ATC; Gary B. Wilkerson EdD, ATC

THE UNIVERSITY of TENNESSEE

Figure 3

OWI Score ≤ 90 vs. > 90 Total # Symptoms Reported

1 - Specifici

CLINICAL RELEVANCE

AUC = .972

≥ 2

≥ 3

0% Low OWI

0% Low OWI

(0/6)

USA Boxing Team (N=

ore ≤ 90 (Median) vs. > 9

/17 = 47% vs. 9/17 = 539

hole-Body Reactive Agility

BACKGROUND AND PURPOSE

Accumulating evidence indicates that mild traumatic brain injury (mTBI) can have serious long-term adverse effects¹
Up to 50-80% of highly competitive athletes may not report acute concussion symptoms to avoid restriction of activity²
Research has documented that survey responses can identify athletes with persistent post-concussion syndrome (PPCS)^{3,4}
Total number of PPCS symptoms has been related to evidence of degenerative changes in white matter integrity³
Repetitive head impact (RHI) can produce similar adverse effects to those associated with diagnosed concussion⁵
Head blows sustained by boxers that do not produce short-term symptoms may actually cause cumulative damage
Identification of athletes who possess subtle cognitive impairments could facilitate more effective clinical management
Visual-motor reaction time (VMRT) and whole-body reactive agility (WBRA) may be important in this regard
Our purpose was to assess the potential value of self-reported symptoms and neuromechanical performance capabilities for identification of persisting effects of exposure to subconcussive head blows among effect competitive boxers

PARTICIPANTS & PROCEDURES

- 17 USA Olympic Boxing Team members completed surveys and performance tests during a single screening session
 10 males: (20.7 ±1.1 yrs, 177.8 ±9.5 cm, 69.7 ±15.5 kg) and 7 females: (27 ±6.1 yrs, 169.8 ±7.1 cm, 62.9 ±10 kg)
 Surveys: Sport Fitness Index (SFI),⁷ Depression, Anxiety, and Stress Scale (DASS), and Overall Wellness Index (OWI)
 OWI developed to document number of PPCS symptoms,^{3,4} frequency experienced, and most recent occurrence
 82 symptoms represented in 10 categories; 0-5 scale for each category; sum created 0-100 score (low = adverse)
 Dynavision D2[™] (West Chester, OH) used to test VMRT; TRAZER® Sports Stimulator (Westlake, OH) used to test WBRA
 VMRT assessed by rapid upper extremity responses: 60-s single-task (ST) test and 60-s dual-task (DT) tests (Figure 1)
 Flanker test DT (VMRT+FT): verbal responses to center arrow direction for 20 5-arrow displays on LCD screen
 VMRT Avg, ratio of VMRT Avg for outer 2 rings to inner 3 rings (O/I), and Left minus Right difference (L-R Diff)
 WBRA quantified by 20-repetition lateral (Lat) shuffle test and 12-repetition diagonal (Diag) movement test (Figure 2)
 Proper movement guided by appearance of targets on large monitor in randomized directions; ST and DT (WBRA+FT)
 Start 3.12 m from monitor; target deactivation 0.91 m for lateral shuffling and 1.29 m for diagonal movements
 Reaction time (RT), acceleration (Acc), deceleration (Dec), speed (Spd), and bilateral differences (Asym)
- Strongest 2-factor model analyzed to determine its positive predictive value and negative predictive value

RESULTS

Boxers categorized as having PPCS on the basis of OWI ≤ median value, which was determined to be 90; range 40-100
47% (8/17) ≤ 90; symptom number (range 0-10) strongly associated with median OWI cut-point ≤ 90 (Figure 3)
12 metrics strongly associated with PPCS (OR ≥ 4); WBRA-ST Lat Acc and Lat Total Time strongest predictors (Table 1)
2-factor prediction model provided 100% positive predictive value and 100% negative predictive value (Figure 4)
Sex-specific cut-points: Lat Acc m/s² Male ≤ 3.78; Female ≤ 3.23; Total Time seconds Male ≥ 58; Female ≥ 66
SFI ≤ median value defined as substantial persisting effects of prior injuries; determined to be ≤ 80; range 46-100
Association of SFI ≤ 80 with OWI ≤ 90: 70% positive predictive value and 83% negative predictive value (OR = 14)
9 metrics strongly associated with low SFI (OR ≥ 4); WBRA-ST Lat Acc and Lat Total Time strongest predictors (Table 2)
2-factor prediction model provided 100% positive predictive value and 80% negative predictive value

• Sex-specific cut-points: Lat Acc m/s² Male ≤ 4.12; Female ≤ 2.75; Total Time seconds Male ≥ 60; Female ≥ 66

Variable	AUC	Cut-Pt	Sens	Spec	OR	Р
WBRA Lat Acc Avg (m/s ²) – ST	.778	≤ 3.74	1.00	.67	31.57*	.007
WBRA Lat Total Time (s) – ST	.833	≥ 66	.63	1.00	29.86*	.009
WBRA Lat Dec Avg (m/s²) – ST	.681	≤ 3.22	1.00	.56	20.78*	.020
WBRA Lat Dec Avg (m/s²) – DT	.653	≤ 3.43	.75	.78	10.50	.044
WBRA Diag RT Avg (ms) – ST	.681	≥ 536	.75	.78	10.50	.044
WBRA Diag/Back Acc Asym – ST	.681	≥.16	.75	.78	10.50	.044
WBRA Lat RT Avg (ms) – ST	.639	≥ 508	.75	.78	10.50	.044
WBRA Lat Dec Asym – DT	.681	≥.12	.50	.89	8.00	.111
WBRA Lat RT L-R Diff (ms) – ST	.681	≥ 64	.63	.78	5.83	.117
WBRA Lat Dec Asym – ST	.542	≥.10	.38	.89	4.80	.241
VMRT Avg (ms) – DT	.563	≥ 900	.75	.67	6.00	.109
VMRT L-R Diff (ms) – DT	.563	≥ 20	.38	.89	4.80	.241

Variable	AUC	Cut-Pt	Sens	Spec	OR	Р
WBRA Lat Acc Avg (m/s²) – ST	.714	≤ 3.86	.90	.57	12.00	.060
WBRA Lat Total Time (s) – ST	.786	≥ 66	.50	1.00	15.00*	.041
WBRA Lat Dec Avg (m/s²) – ST	.671	≤ 3.22	.90	.57	12.00	.060
WBRA Lat Dec Avg (m/s²) – DT	.629	≤ 3.21	.50	.86	6.00	.160
WBRA Diag RT Avg (ms) – ST	.557	≥ 530	.70	.71	5.83	.117
WBRA Diag/Back Acc Asym – ST	.543	-	-	-	-	-
WBRA Lat RT Avg (ms) – ST	.443	-	-	-	-	-
WBRA Lat Dec Asym – DT	.681	≥.12	.40	.86	4.00	.278
WBRA Lat RT L-R Diff (ms) – ST	.643	≥ 65	.50	.86	6.00	.160
WBRA Lat Dec Asym – ST	.500	≥.09	.40	.86	4.00	.278
VMRT Avg (ms) – DT	.479	-	-	-	-	-
VMRT L-R Diff (ms) – DT	.771	≥ 20	.40	1.00	10.39*	.088

REFERENCES

1. Hunter, LE., et al. The neurobiological effects of repetitive head impacts in collision sports. Neurobiol Dis. 2019;123:122-126...

Figure 4

73% Low OW

(8/11)

100% Low OW

(5/5)

· Subconcussive RHI may result in similar brain alterations as concussion, and may lead to neurological degeneration

PPCS quantified by OWI may result from subconcussive RHI, because only 2 boxers reported concussion history
 SFI associations with OWI, VMRT, and WBRA metrics suggest RHI may elevate risk for musculoskeletal injury

Cause-effect relationships not established, but associations consistent with findings of previous RHI research^{1,5,6}

· Neuromechanical responsiveness to environmental conditions critical for avoidance of head or musculoskeletal injury

· Training programs focused solely on improvement of neuromuscular performance capabilities may be inadequate

· Our findings support emerging evidence that integration of visual, cognitive, and motor processing represents a critically

important factor that can only be assessed by risk screening tests that impose complex neuromechanical demands

11

- Kerr ZY, et al. Disclosure and non-disclosure of concussion and concussion symptoms in athletes: review and application of the socio-ecological framework. *Brain Inj.* 2014;28(8):1009-1021.
- Taghdiri F, et al. Decreased number of self-paced saccades in post-concussion syndrome associated with higher symptom burder and reduced white matter integrity. J Neurotrauma. 2018;35(5):719-729.
- 4. Kontos AP, et al. A revised factor structure for the Post-Concussion Symptom Scale. Am J Sports Med. 2012;40(10):2375-2384
- Bernick C, et al. Repeated head trauma is associated with smaller thalamic volumes and slower processing speed: the Professional Fighters' Brain Health Study. Br J Sports Med. 2015;49(15):1007-1011.
- 6. Wilde EA, et al. Chronic effects of boxing: diffusion tensor imaging and cognitive findings. J Neurotrauma. 2016;33(7):672-680.
- 7. Wilkerson GB, et al. A Sport Fitness Index for assessment of sport-related injury risk. Clin J Sport Med. 2016;26(5):423-428.